Applied spatial statistics for public health data公共卫生数据应用空间分析 最新 lit 百度云 下载 azw3 rb pdf kindle

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")
Exercises based on data analyses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proportions
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standardizing to What Standard?
2.3.5 Cautions with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projections and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operations
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Mapmaking
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendations
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.6.4 Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functions
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
6.4 Comparing Point Process Summaries
6.4.1 Goals
6.4.2 Assumptions and Typical Output
6.4.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
6.4.4 Method: Difference between K Functions
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumptions and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proportions
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumptions and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumptions
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumptions and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumptions and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumptions and Typical Output
7.6.3 Method: Pearson’s χ2
7.6.4 Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related Considerations
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relationship to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observations: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressions
9.3.4 Concluding Remarks on Spatial Autoregressions
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional Considerations in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
网站评分
书籍多样性:7分
书籍信息完全性:7分
网站更新速度:7分
使用便利性:8分
书籍清晰度:8分
书籍格式兼容性:9分
是否包含广告:8分
加载速度:7分
安全性:5分
稳定性:3分
搜索功能:6分
下载便捷性:4分
下载点评
- 强烈推荐(321+)
- 藏书馆(60+)
- 无漏页(233+)
- 推荐购买(94+)
- 不亏(440+)
- 一星好评(217+)
- 内容齐全(680+)
- azw3(633+)
- 超值(165+)
- 章节完整(663+)
- 速度快(326+)
- 书籍完整(659+)
下载评价
- 网友 索***宸:
书的质量很好。资源多
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 养***秋:
我是新来的考古学家
- 网友 菱***兰:
特好。有好多书
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 薛***玉:
就是我想要的!!!
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
日益亲近 最新 lit 百度云 下载 azw3 rb pdf kindle
现货正版 液压阀原理使用与维护 第三版 张利平 液压阀经典图书 液压阀基础知识 液压阀故障诊断排除方法 机械设备管理教程书籍 最新 lit 百度云 下载 azw3 rb pdf kindle
何时雾散尽 居筱亦(音乐系才女×妹狂魔情感大戏!新增番外甜蜜小剧场5则+作者真情流露创作笔记+海量24万字全新完美修订) 最新 lit 百度云 下载 azw3 rb pdf kindle
90天冲刺美院:美术高考经典指南(素描) 最新 lit 百度云 下载 azw3 rb pdf kindle
餐厅管理 最新 lit 百度云 下载 azw3 rb pdf kindle
戏曲武功教程 最新 lit 百度云 下载 azw3 rb pdf kindle
民国通俗演义(上下) 最新 lit 百度云 下载 azw3 rb pdf kindle
根植幼儿生活的主题教育活动(幼儿园“关爱课程”丛书) 最新 lit 百度云 下载 azw3 rb pdf kindle
英语周计划系列丛书:4周全面突破BEC综合备考周计划(初级) 最新 lit 百度云 下载 azw3 rb pdf kindle
贺师傅天天美食:爽口凉拌菜 最新 lit 百度云 下载 azw3 rb pdf kindle
- 九型人格 最新 lit 百度云 下载 azw3 rb pdf kindle
- People in public 2014 National Bank Financial Recruitment Examination exclusive materials 最新 lit 百度云 下载 azw3 rb pdf kindle
- 套装2册 超实用 小庭院的设计与布置+庭院造景施工指南 最新 lit 百度云 下载 azw3 rb pdf kindle
- 自由跑酷 最新 lit 百度云 下载 azw3 rb pdf kindle
- 恐惧心理学 最新 lit 百度云 下载 azw3 rb pdf kindle
- The Mikado in Full Score 最新 lit 百度云 下载 azw3 rb pdf kindle
- 正版现货 《灰色童话书》“译”问 曹顺发 编著 专业英语 英语专项训练 人民交通出版社股份有限公司 最新 lit 百度云 下载 azw3 rb pdf kindle
- 墨点字帖高中生必背古诗文 行楷 硬笔书法钢笔字帖 最新 lit 百度云 下载 azw3 rb pdf kindle
- 信息系统项目管理师考试教程和考试大纲(套装共两本) 最新 lit 百度云 下载 azw3 rb pdf kindle
- 申论极致真题(广东卷)(共2册) 最新 lit 百度云 下载 azw3 rb pdf kindle
书籍真实打分
故事情节:3分
人物塑造:8分
主题深度:3分
文字风格:6分
语言运用:6分
文笔流畅:7分
思想传递:9分
知识深度:5分
知识广度:6分
实用性:9分
章节划分:3分
结构布局:5分
新颖与独特:8分
情感共鸣:4分
引人入胜:4分
现实相关:8分
沉浸感:5分
事实准确性:5分
文化贡献:3分